

Review Article

Microwave assisted one-pot Total synthesis of some natural Quinazoline alkaloids- a review Joshi N. *¹, Goyal Anju ²

¹ H. R. Patel Institute of Pharmaceutical Education & Research, Shirpur(Maharashtra)India, 425405
 ² B. N. Girl's college of Pharmacy, Udaipur(Rajasthan) India, 313001

The current review mainly concern with the greener approach for the synthesis of quinazoline alkaloids. Due to the important role in lead optimization as well as for the synthesis of derivatives, effective and convenient methods are a serious need for medicinal chemistry. Synthesis of complex quinazoline alkaloid moiety is difficult, time consuming and increase the cost of synthesis. So, by applying Microwave assisted one-pot synthesis above problems can be overcome. It is try to include as many as possible quinazoline moiety which are fused or attached with some different heterocycles. The review contains 2,3-disubstituted quinazolin-4-ones, quinazoline fused with pyrrole, pyrroloquinoline, piperazine and benzodiazepin ring. Included reactions in review are simple and efficient for the synthesis of natural quinazoline alkaloids.

Key words- Quinazoline alkaloids, Leutonin, Deozyvasisinone, Microwave, One -pot raection

Introduction

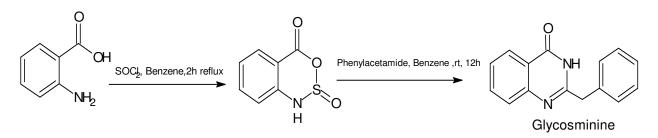
Quinazoline alkaloids are a small group of secondary natural compounds, which passes a number of biological activity. For this reason it attracts a number of scientists to work on quinazoline heterocycle. Quinazoline alkaloids attract the scientist since 1888, with the discovery of the first natural representative of them - (+)peganine (vasicine) ¹. Scientist had work on these alkaloids and synthesized them in to the laboratory. Synthesis of natural product

* Address for Correspondence

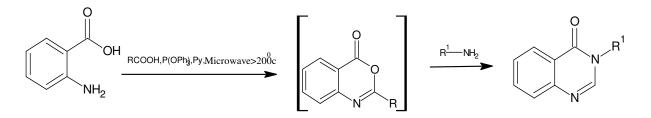
narendrajoshi@gmail.com

involves complex multi-step procedures, harsh reaction conditions, longer reaction times. expensive reagents, anhydrous solvents and cumbersome experimental/ work-up procedures. In this review we try to compile the microwave synthesis of natural Quinazoline alkaloids, Because microwave is a less time consuming, avoid multi-step procedures and Good yield of product with purity. Quinazoline fused with some other heterocycles show prominent phramcological activity like Lutonin (Cytotoxic activity), Isaindigottone (anti-Fumiquinazoline oxidant). (Cytotoxic activity) etc. A number of work has been

published in journals which mention the chemistry of natural alkaloids² and there chemical distribution in nature with some heterocyclic¹.In spite other of there therapeutic value, less availability and low yield it is difficult to synthesis Quinazoline alkaloids on large level. We have attempted to compile some Quinazoline alkaloids synthesis with the help of microwave. Some are them are one pot and some contains number of steps for synthesis of a complex alkaloids. The present review contain-


- 1) One pot synthesis of 2,3-disubstituted quinazolin-4-ones
- One pot synthesis of quinazolinones with pyrrole ring
- One pot synthesis of quinazolinones with pyrroloquinoline ring
- One pot syntheses quinazoliopiperazine ring
- 5) One pot syntheses of quinazolinobenzodiazepin ring

One-Pot Synthesis of 2, 3-Disubstituted Quinazolin-4-ones

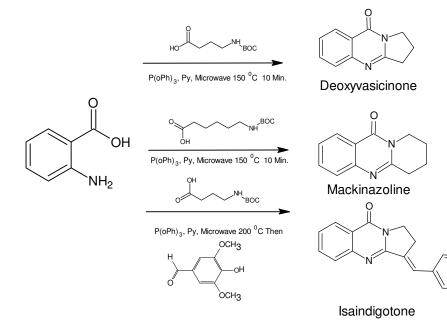

2,3 disubstituted quinazoline show potent

pharmacological activity e.g. Glycosminine anti-malarial) methaqualone (sedative and piriqualone (anticonvulsant). The general method of Quinazoline synthesis includes hypnotic), chloroquinalone (antitussive), and reaction of anthranilic acid with acylchloride or with carboxylic acid which generates the benzoxzinone. and further reaction with aniline or substituted amine groups which gives 3-substituted quinazolinones derivatives. А number of synthesis methodology are applied for sunthesis of Quinazoline alkaloids such as Glycosminine (Glycosmis arborea) and arborine (G. arborea) were synthesized by Kametani et al.³ by reaction between phenylacetamide with sulfinamide anhydride Glycosminine produced and N-methylsulfinamide anhydride used inplace of phenylcetamide which gives arborine. Scheme I

In the One pot synthesis of 2,3 –disubstitued quinazolinone first anthranilic acid and benzoyl-chloride mix with pyridine which stirred at room temperature and then Cyclohexyl-amine and P(PhO)₃ were then added and the mixture was microwave irradiation at >200⁰ c. Where P(PhO)₃ act as a coupling agent. **Scheme II**⁴.

Scheme I - Conventional synthesis of Glycosminine

Scheme II- Microwave assisted synthesis of 3-substituted Quinazoline synthesis


One Pot Synthesis of quinazolinones with Pyrrole Ring ⁵

A number of methods have been reported for the synthesis of deoxyvasicinone, Mackinazolinine and Isaindigotone. These include transition-metal-catalyzed reductive 6 N-heterocyclization, coupling of Omethylbutyrolactim with anthranilic acid, ⁷ cycloaddition of anthranilic acid iminoketene to a methyl butyrolactam (via sulfonamide anhydride),⁸ intramolecular aza-Wittig reactions using PPh₃ and PBu₃,⁹ the cycloaddition of anthranilamide with 10 succinic anhydrides, and solvent-free microwave-assisted reactions between isatoic anhydride and pyrrolidone.

Ji-Feng Li et al. 2005 ¹¹ reported synthesis anthranilic acid with 4-(tert-butoxycarbonylamino) butyric acid in the presence of $P(OPh)_3$ in pyridine at 200 °C for 10 min, followed by addition of 4-hydroxy-3,5dimethoxybenzaldehyde and microwave irradiation at 230 °C for 12 min gives isaindigotone

Mackinazolinone was synthesized by Ji-Feng Li 2005 using anthranilic acid with 5-(tert-butoxycarbonylamino) pentanoic acid in the presence of P(OPh)₃ in pyridine under microwave irradiation at 220 °C for 10 min afforded Mackinazolinine, while using 4-(tert-butoxycarbonylamino) butyric acid with Microwave irradiation at 150°C gives Deoxyvasicinone. Yadav and Reddy 2002

also reported solvent-free microwaveassisted synthesis of deoxyvasicinone by reaction between isatoic anhydride and pyrrolidone.

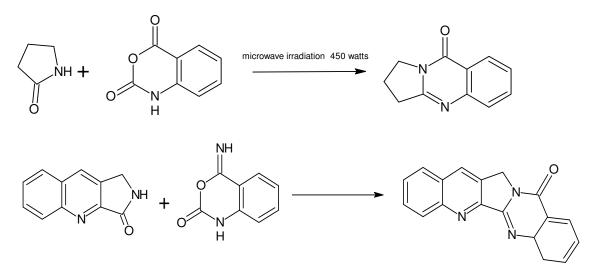
One Pot synthesis of Quinazolinones with pyrroloquinoline

Luotonin A is a cytotoxic alkaloid first isolated in 1997 from the plant *Peganum nigellastrum* The six luotonins can be classified into three categories: luotonins A, B, and E are pyrrolo-quinazolinoquinoline alkaloids, luotonin F is a 4(3H)-quinazoline alkaloid, and luotonins C and D are canthin-6-one alkaloids. Jing Lu Liang, et al 2011 ¹² present a review in recent advances of Luotonins and its derivatives. The review contain synthesis of lutonins by formation of the pyridine core (ring B), the pyrrole core (ring C), the pyrimidinone core (ring D), the 5H-pyrrolo[4,3-b]pyridine core (rings B and C), the pyrrolo[1,2-a]pyrimidin-4(6H)-one core (rings C and D), and the pyrido[2'3':3,4]pyrrolo[1,2-a]pyrimidin-4(6H)-one core (rings B,C,D) as the final step.

OCH₃

ΟН

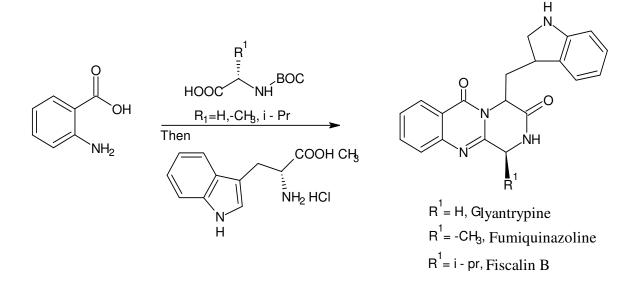
OCH₃


13 by Lutonin is synthesized Batev Zhou¹⁴⁻¹⁵ (10% yield in eight steps) and (47% yield in five steps). Ming C. T. et al 2011 ¹⁶ Synthesized leutonin A and its analogues by Lewish acid $(Yb(OTf)_3)$ catalyzed intamoleuclar aza dies alder cyclization in one pot synthesis and tested for cytotoxicity in vitro against the murine leukemia P-388 cell line with an IC₅₀ value of 6.3 µM. Yadav and Ready synthesized

lutonin A by subjected to microwavepyrrolo[3,4-b]quinolineand isatoicirradiation at 450 watts to3-oxo-1H-anhydride for 6 min.

Scheme III- One Pot synthesis by using Yb(OTf)₃

Scheme-IV – Lutonin A synthesis by one pot reaction

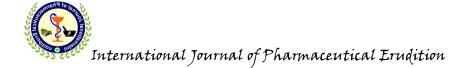

One-PotTotalSynthesesQuinazoliopiperazine ring system17

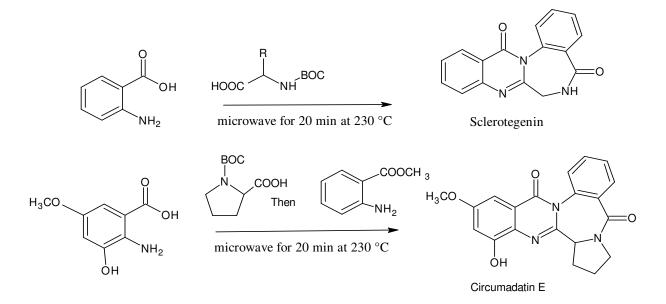
Quinazoliopiperazine ring containing natural alkaloids such as anacine ,(+)verucine,Glyantrypine, Fumiquinazoline A-I, Fiscalin A-C are show some of pharmacological activity.A microwavepromoted three-component one-pot reaction has been developed by Ji-Feng L., et al 2005 to provide access to the core pyrazino[2,1-b] irradiation of anthranilic acid with N-Bocfollowed by the addition of Dglycine tryptophan methyl ester hydrochloride and microwave heating at 150 °C for 10 min provided glyantrypine in 55% yield. While reaction of anthranilic acid with N-Boc-Lalanine and then addition of D-tryptophan hydrochloride methylester (microwave heating, °C, 220 1.5 min) gives

Microwave

quinazoline-3,6-dione.

Fumiquinazoline 39% and anthranilic acid , Boc-L-valine and triphenyl phosphite along with anhydrous pyridine heating at 55 0 c for 16hrs. then addition of D-tryptophan methyl ester hydrochloride and microwave heating at 220°C for 1.5 min give sFiscalinB


Scheme-V one pot synthesis of Glyantrypine, Fumiquinazoline, Fiscalin B


One pot synthesis of Quinazolinobenzodiazepine ring ¹⁸

In recent past some of year quinazolinobenzodiazepine alkaloids were isolated from the various species of fungus like Aspergillus ochraceus (Circumdatins A-G) Penicillium sclerotigenum (Sclerotigenin) . A larger number of synthetic procedures are available for the synthesis of diazpine ring fused with Ouinazoline like N-sulfinylanthraniloyl chloride is used as a precursor for synthesis of Circumadatin F & C^{19} some other used aza-witting cyclization for synthesis of sclerotegenin and Circumadatin F ²⁰.

Circumdatin F and some of quinazolinobenzodiazepine were synthesized by Ji-Feng Liu et al 2005 using anthranilic acid , N-Boc-alanine and triphenyl phosphite along with 1 mL of anhydrous pyridine. The sealed vial was irradiated in the microwave for 20 min at 230 °C. which provide Circumdatin F at yield 32%.

www.pharmaerudition.org Aug 2011, 1 (2), 1-9

Scheme VI- Three component one pot synthesis of some Benzodiazepine fused quinazolinones.

Summary

The present review describe one-pot synthesis methodology and there advancement by one-pot synthetic method. A number of synthetic methods are available for the synthesis of Quinazoline alkaloids but, Due to natural product involves complex multi-step procedures, harsh reaction conditions, longer reaction times it was much convenient to synthesis through Microwave method Green applying approach for synthesis. Quinazoline Moiety passes a number of therapeutic value. The synthesis of these alkaloids with advance technique and new derivatization can

generate a more effective derivative. We feel that alkaloids which contain Quinazoline or contain other heterocycles will show potent activity or may be used as a lead for discovery of new components

References

 D'yakonov A. L. and Telezhenetskaya M. V. Quinazoline Alkaloids in Nature *Chemistry of Natural Compounds* 1997, 33(3), 221-267.

2. Mhaske S. B. and Argade N. P. The chemistry of recently isolated naturally occurring quinazolinone alkaloids *Tetrahedron* 2006, 62, 9787–9826.

3. Kametani T., Loc C. V., Higa, T. Koizumi M., Ihara M. and Fukumoto K. Iminoketene cycloaddition total syntheses of arborine, glycosminine, and rutecarpine by condensation of iminoketene with amides *J. Am. Chem. Soc.* 1977, 99, 2306.

4. Liu J.-F., Lee J., Dalton A. M., Bi G., Yu L., Baldino C. M., McElory E., and Brown M. Microwave-assisted one-pot synthesis of 2,3- disubstituted 3*H*quinazolin-4-ones *Tetrahedron Lett.* 2005, 46, 1241.

5. Yadav J. S., Reddy B. V. S. Microwave-assisted rapid synthesis of the cytotoxic alkaloid luotonin A *Tetrahedron Lett.* 2002, 43, 1905.

6. Akazome M., Kondo T. and Watanabe Y. J. Transition-metal complexcatalyzed reductive N-heterocyclization: synthesis of 4(3H)-quinazolinone derivatives from N-(2-nitrobenzoyl)amides *Org. Chem.* 1993, 58, 310.

7. Onaka, T. A general three-step synthesis of pyrrolidino[2,1-^{*b*}]quinazolone alkaloids via biogenetically patterned path *Tetrahedron Lett.* 1971, 12, 4387.

8. Kametani T., Loc C. V., Higa T., Koizumi M., Ihara M. and Fukumoto K. J. *Am. Chem. Soc.* 1977, 99, 2306. 9. Eguchi S., Suzuki T., Okawa T. and Matsushita Y. *J. Org. Chem.* 1996, 61, 7316.
(b) Takeuchi H., Hagiwara S. and Eguchi S. A new efficient synthesis of imidazolinones and quinazolinone by intramolecular aza-Wittig reaction *Tetrahedron* 1989, 45, 6375.

10. Mhaske S. B. and Argade N. P.
Concise and Efficient Synthesis of Bioactive
Natural Products Pegamine,
Deoxyvasicinone, and (-)-Vasicinone J.
Org. Chem. 2001, 66, 9038.

11. Ji-Feng Liu, Ping Ye, Kevin Sprague, Katie Sargent, Daniel Yohannes, Carmen M. Baldino, Christopher J. Wilson and Shi-Chung N.G. Novel One-Pot Total of **Syntheses** Deoxyvasicinone, Mackinazolinone, Isaindigotone and Their Derivatives Promoted Microwave by Irradiation Organic Letters 2005, 7(15), 3363 - 3366.

 Jing Lu Liang, Hyo Chang Cha and Yurngdong J. G. Recent Advances in the Studies on Luotonins molecules *Molecules* 2011, 16, 4861-4883.

Ma Z. Z., HanoY., Nomura T. and
Chen Y. J. Two New
Pyrroloquinazolinoquinoline Alkaloids from
Peganum nigellastrum *Heterocycles* 1997,
46, 541.

14. Zhou H. B., Liu G.S. and Yao Z.J. Short and efficient Total Synthesis of Luotonin A and 22-Hydroxyacuminatine Using A Common Cascade Strategy *J. Org. Chem.* 2007, 72, 6270.

15. Twin H. and Batey R. A. Intramolecular Hetero Diels–Alder (Povarov) Approach to the Synthesis of the Alkaloids Luotonin A and Camptothecin *Org. Lett.* 2004, 6, 4913.

16. Ming-Chung Tseng, Yu-Wan Chu, Hsiang-Ping Tsai, Chun-Mao Lin, Jaulang Hwang, and Yen-Ho Chu One-Pot Synthesis of Luotonin A and Its Analogues *Organic Letters* 2011, 13(5), 920–923.

17. Ji-Feng Liu, Ping Ye, Bailin Zhang, Grace Bi, Katie Sargent, Libing Yu, Daniel Yohannes and Carmen M. B. Three-Component One-Pot Total Syntheses of Glyantrypine, Fumiquinazoline F. and Fiscalin B Promoted by Microwave Irradiation J. Org. chem. 2005, 70, 6339 6345.

18. Ji-Feng Liu, Mira Kaselj, Yuko Isome, Jennifer Chapnick, Bailin Zhang, Grace Bi, Daniel Yohannes, Libing Yu and Carmen M. B. Microwave-Assisted Concise Total Syntheses of Quinazolinobenzodiazepine Alkaloids J. Org. Chem., 2005, 70(25), 10491-10493.

19. Snider B. B., Busuyekb M. V. Synthesis of circumdatin F and sclerotigenin. Use of the 2-nitrobenzyl group for protection of a diketopiperazine amide; synthesis of *ent*-fumiquinazoline G *Tetrahedron* 2001, 57, 3301.

20. Belofsky G. N., Anguera M., Jensen P. R., Fenical W. and Kock M. Oxepinamides A-C and Fumiquinazolines H-I: Bioactive Metabolites from a Marine Isolate of a Fungus of the Genus Acremonium Chem. Eur. J. 2000, 6, 1355.